Mahatma Gandhi Vidyamandir's

Loknete Vyankatrao Hiray Arts, Science and Commerce College, Panchavati, Nashik-422003 (Affiliated to SPPU, Pune, Reaccredited with 'A' grade, Recipient of Best College Award by SPPU)

Programme Specific Outcomes,

&

Course Outcomes of M.Sc

Department of Chemistry

Academic Year

2021-22

Programme Specific Outcomes: M.Sc. Chemistry (PSC)

Name of the Programme: M.Sc Chemistry			
Program Specific Outcomes			
At the end of the programme, student will be able to			
1	have a knowledge of the advanced terms, theories, principles, and techniques of chemistry.		
2	get insight about the basics of research.		
3	get acquainted with advanced chemistry related equipment.		
4	use modern research techniques.		
5	have quality assurance and quality control ability required for industry.		
6	implement biochemical, pharmachemical knowledge wherever necessary.		

Semester-I			
Paper	Course code & course title	At the end of the course, student will be able to	
		Define thermodynamics quantum mechanics, change of state of	
		chemical bonding, chemical kinetics, enzyme catalysis &	
		molecular thermodynamics.	
		Explain or discuss concepts of V.B.T Helmholtz function	
		Schrodinger wave function, molecular reaction dynamic explain	
		complex reaction, thermodynamics, collision.	
	PSC (CHP-110)	Apply & calculate problems on quantum chemistry, chemical	
Ι	(Fundamental of	kinetics, thermodynamics.	
	physical chemistry)	Draw diagram of flash photolysis, flow technique, energy level	
		diagram.	
		Estimate Schrodinger equation, normalisation wave function,	
		method for determining of molar qualities V.B.T, chain reaction,	
		Eyring equation, Michalis mechanism attrition function.	
		Create a list of quantum mechanics applications in day-to-day	
		life, write H2-Br2 mechanism.	
		Define the concept of point group and trends of periodic table.	
		understand the concept of symmetry, symmetry elements,	
		hydrides of alkali and alkaline earth metals	
	PSC (CHI-130)	classify the molecules according to their point group, oxides and	
	Molecular	oxyacids of phosphorus and sulphur.	
II	Symmetry and	distinguish between the molecules, determine the hybridization	
	Chemistry of Main	and geometry of interhalogen compounds.	
	Group Elements	evaluate the point group of different molecules, nature, bonding,	
		geometry of oxides and halides of xenon.	
		generate the list of symmetry operations present in a molecule,	
		structure of Boron and carbon containing compounds	
TTT		Draw the reaction and its of mechanism of different	
111		rearrangement reaction	

Course Outcomes: M.Sc. Chemistry(PSC)

Paper	Course code & course title	At the end of the course, student will be able to
		Semester-II
		by polarimetrically
		Determine specific rotation and % of optically active substances
		change and equilibrium constant by Potentiometry.
	Cnemistry-I	Analyse the Stability of complex ion and standard free energy
V	Basic Practical	Explain the energy of activation and second order reaction
T 7	PSC (CHP-107)	change and equilibrium constant by Potentiometry
		Apply the Stability of complex ion and Standard free energy
		and run TLC
		Discuss the preparation of organic compound, their purification
		Find out the Acidity, Basicity and Pka Value on pH meter
	General Chemistry Section-II	plan for synthesis of nanoparticles by using sol-gel methods.
		Kinetics of photocatalytic dye degradation by ZnO or TiO?
		nurity.
IV		Prenare the various inorganic complexes and determine its %
	PSC (CHG-190)	allov
		Explain the gravimetric and volumetric analysis of error and
		Describe the term related to solid state
		the problems.
		Plan the synthetic reagent of oxidation and reduction for solving
		and its importance.
	Chemistry	decide the concept of heterocyclic chemistry, stereochemistry
	Chemistry	intermediate and different ylides.
	PSC (CHO-150)	Explain the stability, reactions, reactivity of reactive
		oxidising and reducing agents.
		Understand reaction, its mechanism and uses of different
		role of various reaction intermediates.
		Understand the basics of redox reaction, criteria of aromaticity,

		define radioactive, nuclear fission, alpha decay, moment of
	PSC(CHP 210)	inertia
		Distinguished between rotational vibrational, Harmonic & in
		harmonic oscillator, nuclear fusion & nuclear fission
т	15C(CIII 210)	calculate binding energy, mass absorption coefficient, moment
I	Physical	of inertia
	Chemistry-II	draw &label breeder reactor, draw vibrational spectra
		justify Born Oppenheimer approximation, neutron activation
		analysis, gamma radiography
		propose Frank Condon principle, Geiger -Nuttall law.
		learn quantum number, term, states, spectrochemical series,
		nephelauxetic series and HSAB, chelate effect.
		Understand interelectronic repulsion, importance and transport
		of metal ions.
		Solve the problem based on terms, states, microstates, selection
		rules and recognize the role of metal complexes in biological
		systems.
		Distinguish between the weak field and strong field splitting of
	PSC(CHI-230)	the terms, states and electron transfer reaction, Electrophilic
II	Inorganic	substitution reaction. reactions of coordinated ligands and
	Chemistry-II	Template effect, concept of spontaneous self-assembly model
		compounds.
		Evaluate the selection rules, terms, states and microstates and
		role of Cu, Fe, Mn and Mo in metalloprotein and
		metalloenzymes
		Design the correlation table, orgel diagram, splitting of terms
		different mechanism involved in exchange of ions across cell
		wall, Na+/K+-ATPase ion pump for active transport of Na+ and
		K+
	PSC(CHO-250) Organic Chemistry-II	Describe of photochemistry: Carbonyl compounds, alkenes,
Ш		dienes polyenes and aromatic compounds.
111		Discuss photo rearrangement Barton reaction, application of
		photochemical reaction.

		Apply Pericyclic reaction: Electro cyclic, Cycloaddition, and
		Ene Reaction, analysis by correlation diagram, FMO approach
		and ATS concept.
		Examine the principal factors affecting UV-absorption spectra,
		Interpret IR spectra on basic values of IR-frequencies.
		Evaluating the problem of UV, IR, PMR, CMR and Mass.
		Prove the Whether the spectral data match with Given organic
		compound.
		Define the term of co-ordination compounds, Organometallic
		reaction, Stability constant, Hydrolysis.
		Describe Solubility of a sparingly soluble salts, Dissociation
	PSC(CHG-290)	constant, Inert and labile complex, catalytical cycles. Kinetic
TX /	150(0110 2)0)	reactions
IV	General Chemistry-	Estimation of Halide by using Potentiometry
	II	Explain the term related organometallic chemistry
		Evaluate the Graph, Tables and Spectra.
		Prove the whether the compound stable or not stable according
		to 18 electron rules.
		Define Solvent free Reaction, Recrystallization, Distillation and
		stem distillation, Conductometric-ordination compounds,
		Photochemistry, Chromatography.
		Describe 12 Green principle chemistry, Solvent extraction,
	PSC (CHP-227	Magnetic Susceptibility, Ion exchange chromatography
T 7	1 SC (CIII -227	Apply Safety techniques for handling of hazardous chemicals.
V	Basic Practical	Making derivatives of organic compounds will help in Industry,
	Chemistry-II	explain Faraday low
		Design to make student aware of green chemistry and role of
		green chemistry in pollution reductions.
		Plan for synthesis eco-friendly Organic and Inorganic compound
		by using Green Pathway.

Course Outcomes: M.Sc.-II Organic Chemistry (PSCO)

Semester-III			
Paper	Course code and Course title	At the end of the course, student will be able to	
		Write a case study report for the separation of natural products from	
		different portions of plants	
		Understand the free radical generation methods as well as their stability	
	PSC(CHO-350)	and reaction mechanism.	
	Organic	Predict the probable reaction mechanism by following kinetic and non-	
Ι	reaction	kinetic methods.	
	mechanism and	Examine the reaction series using various parameters of Hammet	
	Biogenesis	equation.	
		Decide the probable radical reaction mechanism	
		Develop an interest in the biogenesis of natural products such as	
		terpenoids, alkaloids, and so on.	
		Describe 1H NMR Spectroscopy: Chemical Shift, deshelling,	
		correlation for protons bonded to carbon and other nuclei.	
		Discuss of 13C NMR spectroscopy: FT- NMR, type of 13C NMR	
	PSC(CHO-351)	Spectra, proton decoupled, off resonance, APT, INEPT, DEPT,	
	Structure	Chemical shift, nuclear and hetero nuclear coupling constant	
П	Determination	Apply 2D NMR techniques: COSY, homo and hetero nuclear 2D resorts	
11	of Organic	spectroscopy, NOESY and the applications	
	Compounds by	Analyse the mass spectrometry: Instrumentation, various methods of	
	Spectroscopic	ionization, SIMS, FAB, MALDI. Different detectors rules of	
	Methods	fragmentations of different functional groups.	
		Prove the proton Homotopic, Enantiotopic and Diastereotopic by using	
		NMR spectroscopy.	
		Plan to use NMR for prediction of organic Structure.	
	PSC(CHO-352)	Remember the stereochemistry of a six-member ring.	
ш	Stereochemistr	Understand fused bridge and Caged rings, Transannular effect, I strain.	
	y and	Explain resolution of racemic modification, stereochemistry of organic	
	asymmetric	compounds using NMR.	

	Synthesis of	Examine stereochemistry of rings other than six members.
	Organic	Identify geometrical isomerism and stereochemistry of olefins.
	Compounds	Design cram's rule, felkin-Anh rule, Cram's chelate model asymmetric
		synthesis using chiral reagent.
		Describe the molecular pathways that allow carbohydrates to be
	PSC(CHO-353)	modified
	Protection	Discuss the chiral approach, the concept of chiral templates, and how to
	Deprotection,	use the basic principle in a retrosynthetic strategy.
IV	Chiron	Explain classification system for carbohydrates.
	Approach and	Apply the concept of protection Deprotection in organic Synthesis.
	Carbohydrates	Create a variety of carbohydrate structures.
	Chemistry	Design of organic synthesis, hydroxyl, amino carboxyl, ketones, and
		aldehyde protection deportation
		Describe atom economy
	PSC(CHO-354) Solvent free reaction	Understand the supramolecular reaction
V		Apply the Green chemistry Principle in Organic synthesis.
v		Analyse reaction progression by using TLC
		Develop and Design the Environmentally Friendly Pathway.
		Rewrite mechanism of C-C, C-X, C-N, C-S bond formation Reaction.
		Semester-IV
		Study structure and stereochemistry Longifolene
		Explain the total synthesis Hirsute lone B, Ribisins A and B,
	PSC(CHO-450)	Subincanadine E
Ι	Chemistry of	Understanding the synthesis of Vannusals and Pinnaic acid.
	natural product	Analyses the reported research data of natural products.
		Evaluate stereochemistry of natural products using case study.
		Rewrite the total Synthesis of Hirsutellone B, Ribisins A& B.
	PSC(CHO-451)	Define Click Reaction, wittig Reaction, Multi component, Metathesis.
	Organometallic	Organometallic compounds.
П	Reagents in	Discuss the term ring formation reactions c=c bond formation reactions
	Organic	Explain the C=C formation process, as well as multi-compound and ring
	Synthesis	formation reactions.
		Use of Boron and silicon reagent in organic synthesis.

		Decide the reaction mechanism of Multicomponent reaction, boron and
		silicon in cycloaddition synthesis of organic compounds
		Investigation into Sharpless azides the usage of boron and silicon in
		cycloaddition synthesis of organic compounds
		Define chiral drug, antimicrobial drugs, antibacterial, antifungal,
		antiviral, antimalarial etc.
		Understanding of the basic biological and pharmacological interactions
		by using both natural products and total synthesis of bioactive
		molecules.
	PSC(CHO-452)	Use of corresponding knowledge for the development of biologically
111	A) Medicinal	and clinically active drugs.
	chemistry	Explain the structure, activity and drug targets.
		Decide the mechanism of drug absorption, distribution.
		Plan for advanced courses in natural products, organic synthesis,
		medicinal chemistry; fundamentals of cell biology, molecular biology,
		drug design, and analytical methods.
	PSC(CHO-453)	Understand and employ the concept of type determination and
	Ternary	separation.
	Ternary Mixture	separation. Meticulously record physical constants.
	Ternary Mixture separation,	separation. Meticulously record physical constants. Perform micro scale chemical elemental analysis, qualitative estimation
W/	Ternary Mixture separation, carbohydrate	separation. Meticulously record physical constants. Perform micro scale chemical elemental analysis, qualitative estimation of functional groups.
IV	Ternary Mixture separation, carbohydrate synthesis and	separation. Meticulously record physical constants. Perform micro scale chemical elemental analysis, qualitative estimation of functional groups. Extend these skills to organic synthesis.
IV	Ternary Mixture separation, carbohydrate synthesis and Isolation	separation.Meticulously record physical constants.Perform micro scale chemical elemental analysis, qualitative estimation of functional groups.Extend these skills to organic synthesis.Plan for the development of the products like Soap, Performs from
IV	Ternary Mixture separation, carbohydrate synthesis and Isolation Natural	separation.Meticulously record physical constants.Perform micro scale chemical elemental analysis, qualitative estimation of functional groups.Extend these skills to organic synthesis.Plan for the development of the products like Soap, Performs from essential oils.
IV	Ternary Mixture separation, carbohydrate synthesis and Isolation Natural Products and	 separation. Meticulously record physical constants. Perform micro scale chemical elemental analysis, qualitative estimation of functional groups. Extend these skills to organic synthesis. Plan for the development of the products like Soap, Performs from essential oils. Select methods, conclude the methods of project. Make table, flowsheet,
IV	Ternary Mixture separation, carbohydrate synthesis and Isolation Natural Products and Project	 separation. Meticulously record physical constants. Perform micro scale chemical elemental analysis, qualitative estimation of functional groups. Extend these skills to organic synthesis. Plan for the development of the products like Soap, Performs from essential oils. Select methods, conclude the methods of project. Make table, flowsheet, diagram
IV	Ternary Mixture separation, carbohydrate synthesis and Isolation Natural Products and Project	 separation. Meticulously record physical constants. Perform micro scale chemical elemental analysis, qualitative estimation of functional groups. Extend these skills to organic synthesis. Plan for the development of the products like Soap, Performs from essential oils. Select methods, conclude the methods of project. Make table, flowsheet, diagram Describe the term Convergent and Divergent.
IV	Ternary Mixture separation, carbohydrate synthesis and Isolation Natural Products and Project	 separation. Meticulously record physical constants. Perform micro scale chemical elemental analysis, qualitative estimation of functional groups. Extend these skills to organic synthesis. Plan for the development of the products like Soap, Performs from essential oils. Select methods, conclude the methods of project. Make table, flowsheet, diagram Describe the term Convergent and Divergent. understand to synthesis Quinoline by convergent method.
IV	Ternary Mixture separation, carbohydrate synthesis and Isolation Natural Products and Project PSC(CHO-454)	separation.Meticulously record physical constants.Perform micro scale chemical elemental analysis, qualitative estimation of functional groups.Extend these skills to organic synthesis.Plan for the development of the products like Soap, Performs from essential oils.Select methods, conclude the methods of project. Make table, flowsheet, diagramDescribe the term Convergent and Divergent.understand to synthesis Quinoline by convergent method.Explain the term multicomponent reaction
IV	Ternary Mixture separation, carbohydrate synthesis and Isolation Natural Products and Project PSC(CHO-454) Convergent and	separation.Meticulously record physical constants.Perform micro scale chemical elemental analysis, qualitative estimation of functional groups.Extend these skills to organic synthesis.Plan for the development of the products like Soap, Performs from essential oils.Select methods, conclude the methods of project. Make table, flowsheet, diagramDescribe the term Convergent and Divergent.understand to synthesis Quinoline by convergent method.Explain the term multicomponent reactionAnalyse reaction progression by using TLC.reaction completed or not
IV	Ternary Mixture separation, carbohydrate synthesis and Isolation Natural Products and Project PSC(CHO-454) Convergent and Divergent	separation.Meticulously record physical constants.Perform micro scale chemical elemental analysis, qualitative estimation of functional groups.Extend these skills to organic synthesis.Plan for the development of the products like Soap, Performs from essential oils.Select methods, conclude the methods of project. Make table, flowsheet, diagramDescribe the term Convergent and Divergent.understand to synthesis Quinoline by convergent method.Explain the term multicomponent reactionAnalyse reaction progression by using TLC.reaction completed or not Predict the mechanism of multicomponent reaction.

Course Outcomes: M.Sc.-II Physical Chemistry(PSCP)

Semester-III			
Paper	Course code and Course title	At the end of the course, student will be able to	
Ι	PSC(CHP-310) Quantum and solid-state chemistry	Defines Eigen value & Eigen function, angular momentum operator, point defect, ferrimagnetism, intrinsic & extrinsic semiconductor. Explain variation method, properties of quantum mechanical Operators, Dielectric properties, PN Junction. Calculate wave function of Helium atom, spin orbit coupling, total Hamiltonian Operator. Distinguished between schottky defect & Frenkel defect, edge dislocation & Screw dislocation , elastic & plastic deformation, perturbation & variation method. Principle pauli's exclusion principle, & Slater determinant, Approximation, Piezoelectricity, Photoconductivity of crystal. Discuss properties of quantum mechanical Operators, Theory of crystal growth, band Theory, optical properties.	
Π	PSC(CHP-311) Nuclear radiation and polymer chemistry	defineultracentrifugation,nuclearreactor,viscosity,copolymerization, entropy,isobars.distinguished between nuclear fusion & fission, thermoplastic &thermosetting, liquid drop model & shell modelCalculate binding energy, average molecular weight of polymer,entropy and heat of mixingExplain the term ion beam analysis, end group analysisEstimate the ultracentrifugation method, viscosity,osmometry,diffusion, light scatteringProve flory kringbum theory , solid state semiconductor detectortheory	
III	PSC(CHP-312) Physicochemica l methods of analysis	Understand the concept of X - ray luminescence. Inductively coupled plasma atomic emission spectroscopy Introduce concepts of voltammetry coulometry and thermal methods to provide fundamental knowledge .	

		Apply Volta metric application ICPAES technique for
		determination of traces of metal from wine Measurement of SEM
		excitation signal
		Distinguish between Fluorescence and phosphorescence,TGA and
		DTA, chemiluminescence and electrochemiluminescence
		Construct the hydrodynamic voltammetry.
		Propose the theory of ESCA.
		Define photochemistry, fluorescence, phosphorescence, viscous
		flow, solar energy, moulding , vulcanization , reinforcement,
		carbon block, polymer
		Explain the theory of Photoluminescence, photocatalysis process,
	PSC(CHP-313)	Jablonski diagram, copolymerization, stern - volmer equation,
	Photochemistry	solar energy, Actinometry, block copolymerisation ,energy
IV	and Techniques	transfer mechanism
	in polymer	Solve quantum yield, number of Einstein, wavelength of radiation
	chemistry	Distinguished between fluorescence and phosphorescence, Branch
		polymer and linear polymer, Thermoplastic and Thermosetting,
		addition polymer and. Condensation polymer
		Prove Stern Volmer equation
		Create a list of polymers used in day-to-day life.
		Define triiodide ion formation, dipole moment, Actinometry,
		viscosity, chain linkage, Lamberts and beer's law
	PSC(CHP-314)	Describe dipole moment, chain linkage
	Physical	Use of colorimeter, pH metre, spectrophotometer
VI	chemistry	Explain triiodide ion formations, viscosity, photolysis
	practical I	Find out the acidity, basicity and pka value on the pH meter.
		Set up the apparatus properly for the given experiment; perform
		all the activities in the laboratory with neatness and cleanness.
		Semester-IV
		Define nuclear spin, chemical shift, spin spin interaction, X-Ray
		diffraction, magnetic susceptibility, coupling constants. splitting
		Distinguished between diamagnetic susceptibility &
		paramagnetic susceptibility magnetic susceptibility by Faraday &
		paramagnetic susceptionity, magnetic susceptionity by I araday &

Ι	PSC(CHP-410)	gouy Technique, isotropic & anisotropic hyperfine coupling
	Molecular	constant, ferro and Antiferromagnetic.
	structure and	Compare X-ray diffraction & electron diffraction, ESR&NMR
	spectroscopy	Calculate the chemical shift, coupling constants, spacing between
		crystals, wavelength with the help of Braggs equation, number of
		unpaired electrons, neutron electron diffraction analysis.
		Value of degeneracy, factor affecting on g value, factors
		influencing coupling constants g value
		Construction of nuclear resonance spectroscopy, electron
		resonance spectroscopy Magnetic susceptibility.
		Define adsorption, porous solids, flux, absorption ,adsorbate,
		adsorbent, standard electrode potential
		Explain wetting, floatation, detergency, Li-ion battery
	PSC(CHP-411)	Apply Debye-Huckel limiting law, Einstein relationship between
П	Surface	absolute mobility and diffusion coefficient
11	chemistry and	Distinguished between adsorption and absorption, primary and
	electrochemistry	secondary power cell.
		Calculate diffusion coefficient, equivalent conductivity, absolute
		and convection mobility
		Create a list of primary cells, secondary cells and fuel cells.
		Define Protein, ATP, ADP, DNA ,RNA ,X-ray diffraction ,chain
	DSC(CHD 412)	congratulations ribozymes , radiation hazard
	Pionbusical	Explain Michaelis-Menten kinetics, Braggs law, molecular
	shomistry and	structure, radioactive waste management, biological effects of
TTT		radiation
111	special topic in	Use of radiation for food preservation and sterilization, use. of
	nuclear and	nuclear properties of indicator nuclides
	radiation	Distinguished DNA and RNA., Nucleic acid and amino acid
	chemistry	Justify. Biological effects of radiation
		Plan radioactive waste management
		Define Hydrolysis constant, clock reaction, order of reaction,
IV	PSC(CHP-413) Physical	diffusion coefficient, and critical temperature.
		Describe GM counter,

	chemistry	Analysis of fruit juice for vitamin C by HPLC Technique.
	practical III	Arrange the apparatus properly for the given experiment, perform
		all the activities in the laboratory with neatness and cleanness.
		Select methods, conclude the methods of project.
		Make table, flow sheet, diagram
		Define solubility, polybasic acid, transport no, chain linkage,
		TGA, beer's law
	PSC(CHP-414)	described formula complex of silver ammonium salt
	Physical chemistry	Use of colorimeter, pH metre , spectrophotometer, conductometer
V		Explain ternary system, solubility, pH metry
	practical II	Find out solubility, phenol water system and pka value on pH
	I	meter
		Set up the apparatus properly for the given experiment, perform all
		the activities in the laboratory with neatness and cleanness.

Course Outcomes: M.Sc.-II Inorganic Chemistry (PSCI)

Semester-III				
Paper	Course code and Course title	At the end of the course, student will be able to		
Ι	PSC(CHI-330) Organometallic and Homogeneous catalysis	Define Metal carbonyl, carbine, carbocyclic polyenes, Phosphine complex, Homogeneous and Heterogeneous catalyst. Explain the method of carbon multiple bonded compounds. Predict the product of oxidative addition Distinguish between electrophile and Nucleophile Justify Tollens catalytic cycle Make a Structure of carbene, carbyne carbocyclic polymers.		
Π	PSC(CHI-331) Inorganic Reaction Mechanism	 Define the terms Trans effect, labile Complexes, electron transfer reaction, photochemical reaction. Quantum yield, labile Complexes, Inert complexes. Photochemical reaction, prompt and delayed reactions, quantum yield. Discuss the Substitution reaction in octahedral complexes, photochemical reactions involving chlorophyll. Explain Substitution in square planar complexes, Substitution in octahedral complexes SN1, SN2, SN1CB, Electron Transfer reactions, Inner & Outer sphere reactions. classify Chelate ring forming reaction, Non Chelate ring forming reaction Distinguish between d-d Transition and CT transitions, fluorescence and phosphorescence, prompt and delayed reactions 		
III	PSC(CHI-332) Bioinorganic and Medicinal inorganic chemistry	 Define Bioinorganic chemistry, MRI, Radiopharmaceutical, enzyme Biochemistry, Chrysotherapy. Explain the terms Interaction of Metal Complexes with DNA, Cis platin as Anticancer Agents, Therapeutic radiopharmaceuticals, Gold Complexes with Antitumor, Describe Antagonism between 		

		Cu & Mo. Explain Reactions of Metal Complexes with DNA,
		Biomedical Uses of Lithium
		Classify zinc and Copper enzymes, Nonheame Iron, Molybdenum
		enzymes.
		Distinguish between heame iron and non heame iron, copper I
		,copper II and copper III protein.
		Select Transition Metal Complexes as Chemical Nucleases,
		select radiopharmaceuticals drugs for bone imaging.
		Design vit B12, haemoglobin, zinc fingers, manganese enzyme.
		Define Fluorescence, Photodegradation, Magnetic susceptibility
	PSC(CHI-333)	Explain Principle, instrumentation, working and applications of
	Modern	following TGA, DTA, DSC, TPD
IV	Instrumental	Use of X-Ray diffraction NMR
1 v	methods in	calculate the spectra ESR, NMR
	inorganic	Distinguished between DTA and DSC, Cyclic voltammetry and
	chemistry	Hydrodynamic voltammetry
		Justify TGA method for chemical analysis
		Define alloy, ore, pigments, cement, ion exchange
		chromatography, Minerals, standard solution, normal solution,
		photochemistry
		Explain principle of ion exchange chromatography, gravimetric
		analysis, volumetric analysis, laws of kinetics ,standardisation of
	PSC(CHI-334)	solution
VI	Modern methods	Classify the chromatography, conductometry, photometry
V1	of inorganic	Distinguish between cation exchange resin and anion exchange
	Analysis	resin, alloy and ore, ore and minerals
		Select the indictor for standardisation of solution, rate the
		following reaction.
		Make the flow sheet of ore analysis, flow sheet of alloy analysis,
		design the structure of ferrocene,
		tetrakis(triphenylphosphine)nickel II complex.
		Semester-IV
		Define heterogeneous catalyst, adsorption isotherm.

		Explain the principle of heterogeneous catalysis
Ι	PSC(CHI-430)	Use of the Heterogeneous catalyst in Organic synthesis.
	Heterogeneous	Described the factors influencing catalytic action promotors and
	catalyst and its	poison.
	application	Justify Zeolite framework.
		Make a structure Zeolite Framework.
		Define nanotechnology Nano etymology, Nanotoxicology, Wet
		nanotechnology, Dry nanotechnology, Computational
		nanotechnology
		Explain Stalwarts of nanotechnology-Feynman, Drexler and
		Taniguchi, Moore's law, hysico-chemical characteristic
	PSC(CHL/31)	dependent toxicology, Epidemiological evidences
П	Inorganic	Distinguished between the Wet nanotechnology And Dry
11	nanomaterials	nanotechnology
	nanomateriais	Mechanical properties and electronic properties Analysis of a)
		Carbon nanomaterial b) Nano composites include metal
		nanomaterial such as single particle as well as core shell
		nanomaterial.
		Compose the structure of nanomaterial.
		plans for preparation of size dependence Nano material
		Define Crystal defects, Non stoichiometry, Diffusion in
		solids,Magnetic Materials,
		Superconductivity, Ceramic Materials, Composite Materials,
III		Cementitious Materials
	PSC(CHI-432)	Explain Preparation methods of solids, BCS theory, properties
	Material science	and polarization properties
		Properties of ceramics, concrete and asphalt materials,
		Application of cementitious materials, biomaterials and
		biocompatibility
		Make a structure of Crystal defects.
IV	DSC(CHI 433)	Define environmental problem Identify methods, label the
	Project	diagram
		Explain conclusion, application methods, compare methods

		Predict structure calculate value
		Investigate problems; construct the scheme, flow sheet.
		Select methods, conclude the methods of project.
		Make table, flow sheet, diagram
V	PSC(CHI-434) Inorganic Instrumental analysis and computer application, Preparation of inorganic compounds	Define TGA,magnetic moment, aquation reaction,Isomerisation reaction, coordinate bond, nanomaterial Explain the terms cyclic voltammetry, principle of TGA, IR, NMR, XRD. Classify the solid-state materials, standard substances, ligands, types of inorganic reactions, nanomaterial's, Ferrites. Distinguish between primary standard and secondary standard substances, normal and molar solution. Select the method for synthesis of ZnO, Zinc ferrites, Nickel ferrites
		Design the structure of [Mn(salen)], tris(triphenyphosphine)
		חוכגבו(ח) נטוווףובגבא.